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ABSTRACT

Federated learning (FL), as a recent advance of distributed

machine learning, is capable of learning a model over the net-

work without directly accessing the client’s raw data. Never-

theless, the clients’ sensitive information can still be exposed

to adversaries via differential attacks on messages exchanged

between the parameter server and clients. In this paper, we

consider the widely used federating averaging (FedAvg) algo-

rithm and propose to enhance the data privacy by the differen-

tial privacy (DP) technique, which obfuscates the exchanged

messages by properly adding Gaussian noise. We analytically

show that the proposed secure FedAvg algorithm maintains

an O(1/T ) convergence rate, where T is the total number of

stochastic gradient descent (SGD) updates for local model pa-

rameters. Moreover, we demonstrate how various algorithm

parameters can impact on the algorithm communication ef-

ficiency. Experiment results are presented to justify the ob-

tained analytical results on the performance of the proposed

algorithm in terms of testing accuracy.

Index Terms— Federated learning, Differential privacy,

Convergence analysis, Model averaging

1. INTRODUCTION

With widespread government regulations and laws on pri-

vacy protection, privacy-preserving machine learning (ML)

methods have attracted much attention [1]. One of the most

promising methods is the so called federated learning (FL) [2]

which can enable large numbers of data users to collabora-

tively learn a shared ML model without directly exposing any

of their local data. Specially, in FL, a central parameter server

(PS) coordinates the clients’ operations and computes a global

ML model based on the local models learned by the clients

from their local private data. Nevertheless, a number of chal-

lenges arise in order to deploy the FL framework.
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Firstly, FL typically involves a large number of clients,

and therefore it is challenging to have reliable connectivity for

all clients due to limited wireless communication resources

[3]. Secondly, the amounts of data that the clients have as well

as the data distribution can vary greatly from one client to an-

other, which makes the FL algorithm design and theoretical

analysis more challenging [4]. Among the existing methods,

the federated averaging (FedAvg) algorithm proposed in [2] is

one of the most popular algorithms. Within each communica-

tion round, FedAvg runs multiple steps of stochastic gradient

descent (SGD) on a small randomly sampled subset of clients

(i.e., partial participation), and averages the local models on

the PS. As a result, FedAvg is suitable for large scale FL net-

works with better communication efficiency.

Although FL can protect clients’ raw data from being di-

rectly accessed by the PS or other adversaries, the individual

sensitive information can still be revealed if they apply differ-

ential attacks [5] to the messages exchanged between the PS

and clients. One of the approaches to prevent differential at-

tacks from breaching privacy is differential privacy (DP) [6],

which can protect the privacy even when the PS/adversaries

have full knowledge of the training mechanism and access the

model parameters [7]. The DP has been considered in several

FL algorithms. For example, the work [8] considered DP for a

model averaging (MA) based FL algorithm and analyzed the

impact of DP level on the algorithm convergence; the work [9]

employed Bayesian DP to provide less privacy loss for gen-

eral MA based FL systems; the work [10] applied DP to the

FedAvg algorithm but considering local full gradient descent

and full client participation; analogously, the work [11] con-

sidered DP for the distributed ADMM algorithm.

In this paper, we analyze the convergence of the secure

FedAvg algorithm. A striking feature of our analysis is that

we explicitly take into account the interplay between vari-

ous system parameters (including mini-batch size, the local

epoch length, and number of randomly selected clients) and

achievable protection level based on the amplification privacy

theorem [12]. The analysis results reveal insightful trade-off

between the algorithm convergence speed and these system

parameters. Experimental results are presented to verify our
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theoretical findings.

2. SECURE FEDERATED AVERAGING WITH DP

2.1. Federated Averaging Algorithm

We consider a FL network consisting of a parameter server
(PS) and a total number of N clients. The PS aims to learn
a ML model through collaboration with the clients with-

out directly accessing their private raw data. Let Dk ,

{(xk,m, yk,m)}nk

m=1 be the local dataset of client k for

k ∈ [N ] , {1, . . . , N}, where nk is the data size, xk,m

is the m-th training data sample and yk,m is the correspond-
ing label. Assume that the ML task involves solving the
following optimization problem [2]

min
w

{

F (w) ,

N
∑

k=1

pkFk (w)

}

. (1)

Here, w ∈ R
M is the learning parameter vector, pk =

nk/
∑N

k=1 nk is a weighting coefficient, n =
∑N

k=1 nk is the

data size for all clients. Fk (w) = 1
nk

∑nk

m=1 ℓ (w;xk,m, yk,m)

is the local cost function, where ℓ(·) is a user-specified loss

function.

In this paper, we employ the FedAvg algorithm in [2, 13]

to handle problem (1). FedAvg is based on the classical dis-

tributed stochastic gradient descent (SGD) algorithm [14]. In

distributed SGD, at each iteration number t, each client k
maintains a local model wk

t+1 by local SGD update

wk
t+1 ← wk

t − ηt∇Fk

(

wk
t ; ξ

k
t , b

)

, (2)

where ηt is a step size, b is the mini-batch size, ξkt is a mini-

batch data randomly sampled from ⌈nk

b ⌉ mini-batches of Dk,

and ∇Fk

(

wk
t ; ξ

k
t , b

)

= (1/b)
∑

m∈ξt
k

∇ℓ
(

wk
t ;xk,m, yk,m

)

is the mini-batch gradient. After local SGD update, the local

models wk
t+1, k ∈ [N ], are uploaded to the PS for model

averaging w̄t+1 =
∑N

k=1 pkw
k
t+1. Then, the PS broadcasts

the averaged model w̄t+1 to the clients, and the above steps

repeat until certain stopping condition is satisfied.

The FedAvg algorithm in [2, 13] can achieve improved

communication efficiency over the distributed SGD owing to

the adoption of two strategies, namely 1) partial client partic-

ipation, and 2) multiple local SGD updates. Specifically, by

partial client participation, only a subset of clients St ⊆ [N ]
(with size |St| = K) are randomly activated to perform local

SGD update and upload the latest model to the PS. It is shown

that partial client participation can reduce the required com-

munication rounds for achieving a desired testing accuracy,

especially when the data are non-independent identically dis-

tributed (non-i.i.d.) across the clients and a small mini-batch

size is used [2]. Note that if the selection of St is modeled as

a sampling process without replacement, then the PS should

take a weighted model average w̄t+1 = N
K

∑

k∈St
pkw

k
t+1

for unbiased global model estimation [13].

Analogously, it is shown empirically in [2] and analyti-

cally in [13] that the algorithm convergence can be effectively

expedited if the clients locally perform an appropriate number

of SGD updates (say Q times where Q > 1) within each com-

munication round. In particular, let t0 be the iteration number

such that mod(t0, Q) = 0. Then, each client k performs Q
local SGD updates, i.e., wk

t+1 ← wk
t − ηt∇Fk

(

wk
t ; ξ

k
t , b

)

,
for t = t0, . . . , t0 + Q − 1, followed by uploading the lat-

est local model to the PS. Thus, the clients upload the lo-

cal models to the PS only at iteration number t satisfying

mod(t + 1, Q) = 0. Suppose T is the total number of lo-

cal SGD updates performed by each client in FedAvg. Then,

the number of communication round is T/Q.

Although being communication efficient, FedAvg may

not be secure since either the (honest-but-curious) PS or

other adversaries may overhear the exchanged messages

{wk
t+1}

N
k=1 and w̄t+1, and attempt to crack the clients’ data

privacy through advanced attacks [5, 7, 15]. We propose to

apply the DP technique to FedAvg for enhancing the data

privacy of the clients.

2.2. Differential Privacy

Differential privacy (DP) is a strong criterion against differ-

ential attacks from adversaries [7].

Definition 1 (ǫ, δ)-DP [11]. Consider two neighboring

datasets D and D′, which differ in only one data sample.

For any deterministic query function f : D → R
M and

a randomized mechanism M : R
M → O, we say M ◦ f

achieves (ǫ, δ)-DP if for any subset of outputs S ⊆ O:

Pr[M(f(D)) ∈ S] ≤ eǫ · Pr [M (f(D′) ∈ S] + δ. (3)

In (3), smaller ǫ represents stronger privacy protection level,

and δ ∈ [0, 1] stands for the probability to break the (ǫ, 0)-DP.
A common strategy to achieve DP is to obfuscate f(·) by

properly adding random noise [7]. For example, the Gaussian
noise mechanism is

M(f(D)) = f(D) + z, z ∈ N (0, σ2
IM ), (4)

where IM is the M ×M identity matrix, and N (0, σ2IM )
is the i.i.d. multivariate Gaussian noise with zero mean and
variance σ2. According to [7], to achieve (ǫ, δ)-DP, the re-
quired noise variance is σ2 = 2(△f)2 ln(1.25/δ)/ǫ2, where
△f is so-called global sensitivity of function f

△f , max
D,D′

∥

∥f(D)− f
(

D′
)
∥

∥ , (5)

where ‖ · ‖ denotes the 2-norm.

2.3. Secure FedAvg with DP

To protect the client data privacy, we apply the DP to the up-

loaded messages {wk
t+1}

N
k=1 when mod(t+1, Q) = 0. It cor-

responds to (4) with the query function fk,t+1(Dk) = wk
t+1

for each client k. Note that according to the post-processing

invariance property [7], the risk of privacy leakage would not
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Algorithm 1 Secure FedAvg

1: Input: Initial model w̄0 and step size η0. The PS broad-

casts w̄0 to all clients (S0 = [N ]).
2: for t = 0, 1, . . . , T − 1 do

3: Client side:

4: for k ∈ St in parallel do

5: if mod (t, Q) = 0 then

6: Set wk
t = w̄t.

7: end if

8: Sample a mini-batch ξkt from Dk and calculate the

local gradient gk
t = ∇Fk

(

wk
t ; ξ

k
t , b

)

.

9: if mod (t+ 1, Q) 6= 0 then

10: wk
t+1 ← wk

t − ηtg
k
t ,

11: else if mod (t+ 1, Q) = 0 then

12: wk
t+1 ← (wk

t −ηtg
k
t )+z

k
t , zkt ∼ N (0, σ2

t,kIM ).

13: Send wk
t+1 to the PS.

14: end if

15: end for

16: for k /∈ St in parallel do

17: wk
t+1 = wk

t .
18: end for

19: Server side:

20: if mod (t+ 1, Q) = 0 then

21: w̄t+1 = N
K

∑

k∈St
pkw

k
t+1.

22: Select a subset of clients St+1 by sampling without

replacement, and broadcast w̄t+1 to all clients.

23: end if

24: end for

be increased if the raw data are not accessed again. There-

fore, given that the averaged model w̄t+1 broadcasted by the

PS is a linear combination of {wk
t+1}

N
k=1, which will be pro-

tected by DP, it is not essential to further protect the downlink

message w̄t+1 as in [8].

Algorithm 1 outlines the proposed secure FedAvg algo-

rithm with DP. In particular, the only difference between Al-

gorithm 1 and the vanilla FedAvg algorithm [16] lies in Step

11 and Step 12, where whenever mod (t+ 1, Q) = 0, each

client k adds Gaussian noise to the local model, i.e.,

wk
t+1 ← (wk

t − ηtg
k
t ) + z

k
t , (6)

where z
k
t ∼ N (0, σ2

t,kIM ), and uploads the noisy local

model to the PS.

Privacy amplification: According to the privacy ampli-

fication theorem [12], it is known that the DP mechanism run

on a random sample of a dataset provides stronger privacy

protection than when run on the entire dataset. It implies

that the noise variance required for achieving a predefined

DP level can be reduced if the protected query function en-

tails randomly sampled data.
For Algorithm 1, because the uploaded local model wk

t+1
(Step 13) is obtained through Q times of mini-batch sampling
(Step 8), we can apply the privacy amplification property to

Algorithm 1. Specifically, suppose that the mini-batches are
sampled without replacement. Then, according to [17], given
the noise level σ2

t,k = 2(△ft,k)
2 ln(1.25/δ)/ǫ2 (where△ft,k

is the global sensitivity of ft,k(Dk)), one can show that (6) in

fact achieves (log(1 + (1 − (1 − b/nk)
Q)(eǫ − 1)), qδ)-DP

for wk
t+1, where q = Qb/nk. Since

(1− (1− b/nk))
Q ≤ Qb/nk = q, (7)

log(1 + q(eǫ − 1)) ≤ q(eǫ − 1) ≤ 2qǫ, (8)

one achieves at least (2qǫ, qδ)-DP. In other words, if one aims
to achieve an (ǫ, δ)-DP for wk

t+1, the required noise level can
be reduced to

σ2
t,k =

2(△ft,k)
2 ln(1.25/(δ/q))

(ǫ/2q)2

=
8q2(△ft,k)

2 ln(1.25q/δ)

ǫ2
,

(9)

where△ft,k will be determined in Section 3.1.

It has been shown that proper large values of b and Q
may benefit the convergence of vanilla distributed SGD [18].

However, as seen from (9), either increasing b or Q would re-

quest higher noise level for DP protection, which may slow

down algorithm convergence. Therefore, (9) implies that, on

the choice of b and Q, there is a trade-off between algorithm

convergence speed and achieved protection level. To under-

stand the trade-off, we analyze the convergence property of

Algorithm 1 in the next section.

3. CONVERGENCE ANALYSIS

3.1. Assumptions

We first give some assumptions for problem (1).
Assumption 1 Each Fk is L-smooth, i.e., for all w and v,

Fk(v) ≤ Fk(w)+(v−w)T∇Fk(w)+ L
2 ‖v−w‖

2, k ∈ [N ].

Assumption 2 Each Fk is µ-strong convex, i.e., for all w, v,

Fk(v) ≥ Fk(w)+(v−w)T∇Fk(w)+ µ
2 ‖v−w‖

2, k ∈ [N ].

Note that the strongly convex and smooth assumptions are

typical examples for logistic regression, softmax regression

and L2-norm regularized linear regression problems.

Assumption 3 The stochastic gradients for each client sat-

isfy E[∇Fk

(

wk
t ; ξ

k
t , b

)

] = ∇Fk

(

wk
t

)

and E[‖∇Fk(w
k
t ; ξ

k
t , b)

−∇Fk(w
k
t )‖

2] ≤ γ2
k/b, ∀k ∈ [N ].

Assumption 4 The gradient for all clients is bounded, i.e.,
∥

∥∇Fk

(

wk
t ; ξ

k
t , b

)∥

∥

2
≤ G2, ∀k ∈ [N ].

Given Assumption 4, one can compute the global sensi-

tivity in (5).

Lemma 1 Suppose that Assumption 4 holds. Let mod(t +
1, Q) = 0 and assume that ηt+1−Q+τ ≤ 2ηt+1 for τ =
0, 1, . . . , Q − 1. Denote ft+1,k(Dk) = wk

t+1(Dk) where

wk
t+1(Dk) represents the local model wk

t+1 obtained from
dataset Dk. Then, the global sensitivity is

△ft+1,k = max
Dk,D

′

k

∥

∥

∥
w

k
t+1(Dk)−w

k
t+1(D

′

k)
∥

∥

∥
= 4QGηt+1,

where D′
k is a neighboring dataset of Dk.
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Proof: Since wk
t+1(Dk) is obtained by Q steps of local SGD

starting from w̄t+1−Q. Hence, we have

wk
t+1(X ) = w̄t+1−Q −

Q−1
∑

τ=0

ηt+1−Q+τg
k
t+1−Q+τ (X ), (10)

where gk
t+1−Q+τ (X ) is the local gradient vector based on

X ∈ {Dk,D
′
k}. Then, we have

∥

∥

∥
w

k
t+1(Dk)−w

k
t+1(D

′

k)
∥

∥

∥

2

=

∥

∥

∥

∥

∥

Q−1
∑

τ=0

ηt+1−Q+τg
k
t+1−Q+τ (Dk)−

Q−1
∑

τ=0

ηt+1−Q+τg
k
t+1−Q+τ (D

′

k)

∥

∥

∥

∥

∥

2

≤ 4η2
t+1

∥

∥

∥

∥

∥

Q−1
∑

τ=0

(

g
k
t+1−Q+τ (Dk)− g

k
t+1−Q+τ (D

′

k)
)

∥

∥

∥

∥

∥

2

≤ 4Q2η2
t+1

Q−1
∑

τ=0

∥

∥

∥
g
k
t+1−Q+τ (Dk)− g

k
t+1−Q+τ (D

′

k)
∥

∥

∥

2

≤ 16Q2G2η2
t+1, (11)

where the first inequality is by ηt+1−Q ≤ 2ηt+1 for τ =
0, 1, . . . , Q−1, and the last inequality is by Assumption 4. �

3.2. Convergence Result

Let w⋆ be the optimal solution to problem (1) and the conver-

gence of Algorithm 1 is measured by ε , E [F (w̄T )− F (w⋆)].
The convergence result is obtained as follows.

Theorem 1 Assume the Assumption 1 - 4 hold. Let κ = L
µ >

1, α = 8κ and the learning rate ηt = 2
µ(α+t) such that

ηt+1 ≤ 2ηt+Q. Then, Algorithm 1 satisfies

E [F (w̄T )− F (w⋆)] ≤
2κ

T + α

(

A+B + C

µ
+ 2L‖w0 −w

⋆‖2
)

,

where

A =

K
∑

k=1

p2k
γ2
k

b
+ 8(Q− 1)2G2 + 6LΓ, (12a)

B =
64MQ4b2G2

nL2ǫ2
log(n) log(

1.252Q2b2

nδ2
)
(

8(Q− 1)2 + 1
)

,

(12b)

C =
N −K

N − 1

4

K
Q2G2, Γ = F (w⋆)−

K
∑

k=1

pkF
⋆
k , (12c)

where F ⋆
k = minw Fk(w), k ∈ [N ].

Proof: The proof primarily follows that in [13], with addi-

tional consideration of added noise in (6). Due to limited

space, details will be presented in the future publication. �

In (12c), the term Γ reflects the heterogeneity of the data

distribution across the clients, and it can impact the algorithm

convergence. That is, if data in Dk, k ∈ [N ] follow similar

distributions, then Γ would be close to zero, whereas Γ could

be large for non-i.i.d. data distribution [13].

We have the following remark regarding the impact of Q,

b and (ǫ, δ)-DP on the algorithm convergence.

Remark 1 Let Tε be the number of required iterations for
Algorithm 1 to achieve an ε convergence accuracy. Then, by
(12a), the number of required communication round Tε/Q is

Tε

Q
∝

Mb2G2 log(n) log(Q2b2/nδ2)

nL2ǫ2
Q5 +

(

1 +
1

K

)

G2Q

+

∑K

k=1
p2kγ

2
k/b+ LΓ

Q
. (13)

Note that when Q is small and the data size n is large, the

first term in the right hand side (RHS) of (13) may become

negligible, and thereby the impact of (ǫ, δ)-DP on the algo-

rithm convergence could become minor. Under the same con-

dition, one can see from (13) that increasing Q may benefit

the convergence speed, but an over-large Q may slow down

the algorithm convergence. So there exists an optimal Q such

that the Tε/Q is minimal.

For the mini-batch size b, one can see that when Q is large

such that the first term in the RHS of (13) dominates, increas-

ing b can deteriorate the convergence speed; otherwise, a large

value of b may improve the algorithm convergence like the

conventional FedAvg without DP. These observations will be

verified by experimental results in the next section.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Experiment Setting

In this section, we evaluate the performance of the secure Fe-
dAvg algorithm (Algorithm 1) for a logistic regression prob-
lem. Denote the ℓ(w;xi) as the prediction model with pa-
rameter (w, b). The loss function is Cross entropy, which is
defined as

Fk(w) = −
1

nk

nk
∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] + λ‖w‖2,

where yi ∈ {0, 1}, ŷi = 1/
(

1 + exp(−wTxi + b)
)

and

λ = 10−4 is the regularization parameter. Note that, this is a

strongly convex optimization problem.

Datasets: The benchmark dataset is Adult [19], which con-

sists of 32561 training samples and 16281 testing samples. In

data preprocessing, the feature is normalized and the miss-

ing values in the dataset are replaced by the most frequently

occurring value in each feature. All the training samples are

uniformly distributed among N = 100 clients. Beside the

i.i.d. case, we also consider the non-i.i.d. case where train-

ing samples are distributed among 100 clients such that each

client only contains one class.

Parameter setting: In all experiments, we set δ = 10−4 and

assume the diminishing learning rate follows the scheme of

ηt = 1/5
1+0.01t . We set the maximal local gradient G = 2,

which is determined by performing the gradient clipping [20]

on each iteration. The required noise power for (ǫ, δ)-DP is

obtained by (9) and Lemma 1.
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4.2. Comparison analysis on various parameters

Impact of the privacy protection level ǫ: We show in Fig.1

the testing accuracy versus communication round (T/Q) of

Algorithm 1 for different values of ǫ, and K = 50, Q ∈
{1, 10} and b = 1. One can see from this figure that the test-

ing accuracy is better for lower protection level (i.e., larger

ǫ) and one for the case “without DP” (i.e., σ2
t,k = 0) is the

best as expected. Moreover, these results are quite close for

Q = 1, while they are quite different for Q = 10, implying

that the testing accuracy is more sensitive to Q.

Impact of the number of chosen clients K: Figure 2 shows

the testing accuracy versus T/Q of Algorithm 1 for different

values of K, and ǫ = 0.5, Q = 10 and b = 1. One can see

from this figure that the testing accuracy is better for larger

K for the i.i.d. data case, however, it is not necessarily true

for the non-i.i.d. data case. The reason for this may be that

more active clients impose noise for larger K to the FL system

during the training.

Impact of the number of local SGD updates Q: Figure 3

shows the testing accuracy versus T/Q of Algorithm 1 for

different values of Q, as well as ǫ = 0.5, K = 10, b = 1. It
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Fig. 3: Impact of Q.

can be seen from this figure that the testing accuracy is better

for smaller Q for the i.i.d. data case, but this does not apply to

the case for the non-i.i.d. data case, implying that there may

exist an optimal Q to balance the communication efficiency

and the testing accuracy performance.

Impact of mini-batch size b: Figure 4 shows the testing ac-

curacy of Algorithm 1 for different values of b, along with

ǫ = 0.5, K = 50, Q ∈ {1, 10}. It can be seen that its test-

ing accuracy is better for larger b for the case of Q = 1, but

this is reverse for Q = 10. The above simulations results are

consistent with the analyses in Remark 1.

5. CONCLUSIONS

We have presented a secure FedAvg algorithm by employing

the DP technique, and its convergence analysis. We have

analytically shown that the secure FedAvg can maintain the

O(1/T ) convergence rate, together with the trade-off be-

tween the communication efficiency and the desired privacy

protection level, and how its performance depends on all the

designed parameters. Then we have provided some experi-

mental results to support the effectiveness of the algorithm

and all the analytical results. Specifically, the mini-batch

size b and the number of local model parameters updates Q
in every communication round are key parameters, that are

essential to the proposed secure FedAvg algorithm in a non-

trivial manner due to the DP applied, which is different from

the conventional FedAvg algorithm.
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